zgfp.net
当前位置:首页 >> 主成分分析法 >>

主成分分析法

因子分析与主成分分析的异同点: 都对原始数据进行标准化处理; 都消除了原始指标的相关性对综合评价所造成的信息重复的影响; 构造综合评价时所涉及的权数具有客观性; 在信息损失不大的前提下,减少了评价工作量 公共因子比主成分更容易被解释; 因...

主成分分析法的缺点: 1、在主成分分析中,我们首先应保证所提取的前几个主成分的累计贡献率达到一个较高的水平(即变量降维后的信息量须保持在一个较高水平上),其次对这些被提取的主成分必须都能够给出符合实际背景和意义的解释(否则主成分...

主成分分析法和层次分析法异同 1.基于相关性分析的指标筛选原理 两个指标之间的相关系数,反映了两个指标之间的相关性。相关系数越大,两个指标反映的信息相关性就越高。而为了使评价指标体系简洁有效,就需要避免指标反映信息重复。通过计算同...

因子分析与主成分分析的异同点: 都对原始数据进行标准化处理; 都消除了原始指标的相关性对综合评价所造成的信息重复的影响; 构造综合评价时所涉及的权数具有客观性; 在信息损失不大的前提下,减少了评价工作量 公共因子比主成分更容易被解释; 因...

都属于统计学科,或者计量经济学。都可以用各种统计软件实现,模糊层次分析法需要专门软件。 (调查问卷SPSS数据统计分析专业人士 南心网 提供)

有相同和不同点的

在SPSS中,主成分分析是通过设置因子分析中的抽取方法实现的,如果设置的抽取方法是主成分,那么计算的就是主成分得分,另外,因子分析和主成分分析尽管原理不同,但是两者综合得分的计算方法是一致的。 确定数据的权重也是进行数据分析的重要前...

主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使...

是希望用较少的变量去解释原来资料中的大部分变量,将我们手中许多相关性很高的变量转化成彼此相互独立或不相关的变量。通常是选出比原始变量个数少,能解释大部分资料中变量的几个新变量,即所谓主成分,并用以解释资料的综合性指标。由此可见...

1输入数据。 2点Analyze 下拉菜单,选Data Reduction 下的Factor 。 3打开Factor Analysis后,将数据变量逐个选中进入Variables 对话框中。 4单击主对话框中的Descriptive按扭,打开Factor Analysis: Descriptives子对话框,在Statistics栏中选择...

网站首页 | 网站地图
All rights reserved Powered by www.zgfp.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com